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There exists a connection between the vectors of the Poincarr-sphere and the 
elements of the complex Hilbert space C 2. This latter space is used to describe 
spin-l/2 measurements. We use this connection to study the intermediate cases 
of a more general spin-l/2 measurement model which has no representation in 
a Hilbert space. We construct the set of operators of this general model and 
investigate under which circumstances it is possible to define linear operators. 
Because no Hilbert space structure is possible for these intermediate cases, it can 
be expected that no linear operators are possible and it is shown that under very 
plausible assumptions this is indeed the case. 

1. INTRODUCTION 

In previous papers (D. Aerts, 1983, 1986, 1987) one of the authors 
proposed an explanation for the probabilities of quantum mechanics based 
on the assumption that quantum structures arise as a consequence of the 
presence of fluctuations on the interaction between the measurement apparatus 
and the entity under study. It is shown in this approach, which has been 
called the "hidden measurement" approach, that quantum probabilities can 
be reproduced by considering an experiment as a class of subexperiments 
(the hidden measurements), indistinguishable to the macroscopic observer, 
and which can be parametrized by a real parameter. The resulting probabilities 
through the averaging process over the whole class of hidden measurements 
coincided with the quantum probabilities. A model for the spin-l/2 experi- 
ments was introduced, and later generalized to include cases of arbitrary 
fluctuations, going from maximal fluctuations which coincide with quantum 
mechanics, to cases of zero fluctuations, which were shown to be classical 
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experiments. The amount of fluctuation can be parametrized by a real parame- 
ter e e [0, 1 ], and the name e-model was given to the model (D. Aerts et 
al., 1993a, b). To make this article self-contained we will briefly reprise this 
e-model in Section 2. By considering e ~ 1, 0 intermediate cases can be 
found, which are neither quantum (e = I) nor classical (e = 0). So it was 
necessary to present a theory (D. Aerts, 1994; D. Aerts and Durt, 1994a, 
b) which is much more general than quantum mechanics and where these 
intermediate cases can be examined. 

The intermediate cases have already been investigated in several different 
mathematical categories. The structure of the Piron lattice of properties (Piron, 
1976) of the entity was investigated and was found to be Boolean for the 
classical case with zero fluctuations and pure quantum for the case of maximal 
fluctuations. For the intermediate cases the lattice was neither Boolean nor 
quantum (D. Aerts and Durt, 1994a, b). In the category of the closures it 
was shown (D. Aerts and Durt, 1994a, b) how the superposition principle 
disappears during the transition from quantum to classical, and that for the 
intermediate cases the Piron axioms to find a representation of the entity in 
a general Hilbert space are violated. In another category, that of the probability 
structures, a transition from Kolmogorovian to non-Kolmogorovian was dis- 
covered such that again the intermediate cases are neither Kolmogorovian 
nor quantum-like (D. Aerts, 1995; S. Aerts, 1996). 

In this paper we will investigate the e-model in yet another category, 
that of observables. More precisely, we will look at the properties of the 
*-algebra of linear operators which are used in quantum mechanics to describe 
observables, as we go from the quantum to the classical case by varying the 
parameter e. In analogy with the disappearing of the superposition principle, 
we expect to find a loss of the linearity of the operators as we pass from the 
quantum to the classical case, and rigorous proofs of  this presumption will 
be sought. 

2. THE e -MODEL 

The physical entity S that we consider is a point particle P that can 
move on the surface of a sphere, denoted by surf, with center O and radius 
1. The unit vector v where the particle is located on surf  represents the state 
Pv of the particle. Hence the set of  states that we consider is given by ~ = 
{Pv lv E surf} .  To introduce the experiments, we consider two diametrically 
opposite points u and - u  on the surface of  the sphere, and denote by [ -  1, 
+ 1 ]u the interval of real numbers [ -  1, + 1 ] coordinating the points of the 
line between u and - u  in such a way that - 1  coordinates - u  and +1 
coordinates u. We introduce a real parameter e c [0, 1] and consider the 
subinterval [ - e ,  +e] ,  C [ -  1, + 1],, The experiment e~ consists of the particle 
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P falling from its original place v orthogonally onto the line between u and 
- u  and arriving at a point coordinated in the interval [ - 1 ,  + 1], by the real 
number v ' u .  In the interval l - e ,  +e],, we consider a uniformly distributed 
random variable K, and the experiment proceeds as follows. If K e l - e ,  
v. u[, the particle P moves to the point u and the experiment e~ gives outcome 
x~,. If K E ] v . u ,  +e], it moves to the point - u  and the experiment e', gives 
outcome x~. If K = v-u, it moves with probability I/2 to the point u, and 
the experiment e~ gives outcomes x],, and it moves with probability I/2 to 
the point - u ,  and the experiment e,', gives outcome x~,. This completes the 
description of the experiment e~. We shall denote the set of possible outcomes 

1 "~ {x,,, x?,,} of the experiment e~ by O ~ and the probability to obtain an outcome ell 

x~, by performing an experiment e~ (respectively an outcome x~,) if the entity 
is in a state p,, by P(e', = x, ~, Ip,,) [respectively P(e~, = x~, Ip,,)]. 

We shall now consider different situations labeled by the parameter e. 
The entity S(e) is described by a set of states E = [p,,t v E s u r f } ,  a set of 
experiments E(e) = {e ' , lu  e sur f ,  e e [0, 1]}, and a set of probabilities 
{P(e~ = x/,lp,,)le~, e E(e), xi, e O~, p~ ~ E}. To lighten the notation we 
denote the probability P(e', = x~lp~) by P~(p, tp,,) and the probability 
P(e~, = x~ Ip,,) by P'(p_~ lp~). We have the following cases: 

1. ~ <- v . u .  Then P'(p,,Ipv) = 1 and P ~ ( p - u l p ~ )  = 0. 
2. - e  <- v . u  <- +~.  Then 

1 
P~(p, lp~) = = - ( v ' u  + ~) 

1 
P'(p_,lpv) = ~ ( - v ' u  + e)  

3. v . u  <- - e .  Then P " ( p ,  lpv) = 0 and P ' ( p _ , l p , , )  = I. 
In the case ~ = 1, we see that the probabilities coincide with the 

probability of a spin-l/2 entity in quantum mechanics, and that the entity S 
can be described in a Hilbert space and the experiments e~, by the linear self- 
adjunct operators of that Hilbert space. 

When we vary ~ over [0, 1], we get intermediate cases going from 
quantum (~ = 1) to classical (~ = 0). It is possible to study whether the 
axioms to derive a Hilbert space structure from the lattice of properties are 
satisfied for the intermediate cases. It was proven that this is only the case 
for e = 1. We will now study the e-model in the category of the operators, 
more precisely in the *-algebra used to describe the operators of Hilbert space 
quantum mechanics. Because there is no Hilbert space structure available for 
the intermediate cases, we need other guidelines. The most natural guidelines 
we can think of are based on physical observables and mathematical 
simplicity. 
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3. THE MAP FROM POINCARI~ SPHERE TO A SET OF 
EIGENVECTORS 

We can establish a correspondence between the points of the unit-sphere 
in ~3, which we will call the Poincar6 sphere, and the eigenvectors of  the 
spin-1/2 operators in the complex space C 4 in the following way. The mapping 

S: R 3---)C4: u = ( s i n 0 c o s ~ o ,  s in0sinq~,  cos0)  
cos 0 sin 0 e-i 'P~ 

S, = sin 0 e i'~ - c o s  0 J 

maps a unit vector u on the spin-l/2 operator S~ which has two eigenvec- 
tors, namely 

SU + 

cos 

sin 

e - i~/2 ~ 

ei~12 
and s, - (°t  - s i n  ~ e -i'pn 

0 ei~/2 ] \ cos 

with eigenvalue + 1 and - 1 ,  respectively. The set of these two orthogonal 
eigenvectors is a basis for the complex space C 2. We can attribute the 
following meaning to these eigenvectors: if the entity is in a state s~+ we 
will find the value + 1 with certainty. The interpretation is then that on the 
Poincar6 sphere the entity is in the state p,  given by the point u. In short, 
we make a unit vector u in I~ 3 correspond with an eigenvector su+ in C 2. 
This correspondence can be made one-to-one, as we shall show now. 

Because we are switching from the space of reals I~ 3 to the complex 
space C 2 we will not use the word "dimensions," but the expression "degrees 
of freedom." On the Poincar6 sphere we have two degrees of freedom: 0 and 
qo. In the complex space C 2 there are four: each complex number can be 
written as the sum of its real part and its imaginary part; but by demanding 
that the norm of the eigenvector is 1, and because an eigenvector is defined 
upon an arbitrary constant (following the first requirement of modulus 1), 
we have a one-to-one correspondence between the vector of  unit length u 
and the set of eigenvectors of  S, with eigenvalue 1 and norm 1. It is obvious 
that there exists a map between the Poincar6 sphere and the set of eigenvectors 
of S, with eigenvalue 1 and norm 1 by the foregoing remarks. The inverse 
map also exists. Indeed, if we take an arbitrary element of C 2 with norm 1, 
we can always construct one and only one unit vector corresponding to this 
element, invariant under multiplication of this element by an arbitrary complex 
number of modulus 1. Let us take 
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i°l~ 
s = ~r2eiO2j with r2t + r~ 2 = 1 a n d r , , r 2  E I~* 

Then we can let this coincide with 

s =lC°s e "2 I 
\ sin ~ e"/2 J 

by 

eiOi = e-i¢/2 
eiO2 ei~/2 ~ 02 -- 01 = q~ + k" 2rr; k e 2[ 

0 
rl = cos ~ 0 r2 

• 0 ~ t a n ~  = r-~ 
r2 sm 

We see that multiplication of  s with an arbitrary constant of  modulus 1 
changes 0~ and 02 with the same constant, so that in the remainder to obtain 
q~ this constant disappears. In other words, the vector u is uniquely defined, 
and the map is now indeed one-to-one. 

4. T H E  A C T I O N  OF  T H E  SPIN- l /2  O P E R A T O R S  ON T H E  
POINCARI~ S P H E R E  

4.1. Physical Assumptions 

We have now made clear the connection between an element of  the 
complex space C 2 and an element of  the space of  reals It~ 3. There also exists 
a connection between the operators in the complex space C 2 and the operators 
on the Poincar6 sphere• Our guideline is that the averages of  a physical 
observable are independent of  our description (thus independent of whether 
we are describing it in the complex space C 2 or on the Poincar6 sphere) and 
the connection that exists between the in-product in C 2 and the scalar product 
of vectors on the Poincar6 sphere. More precisely, the average Sl(t~w) of an 
observable S~ ~ C a when the entity is in a state ~w is given by 

and if we denote the action of the spin operator on the Poincar6 sphere by 
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T~ [thus, with Sl(~w) is associated the vector T1(w) on the Poincar6 sphere], 
we can write the connection of  the inner product which is of  interest to us: 

[ (Sl(~Jw) [ ~w)  [ 2 - -  
1 + TI(w)" w 

2 

These two formulas will be sufficient to define and study the action on 
a state w by a general spin-l/2 measurement e~ on the Poincar6 sphere. By 
the word "action" we mean that the square of the average Tdw) of the operator 
T~ (corresponding to the general spin-l/2 measurement eD on the Poincar6 
sphere when the entity is in a state Pw is given per definition and in analogy 
with the quantum case by 

T d w ) 2  - 
1 + T d w ) "  w 

The operator Tt corresponds to a rotation over ~r. This is so because 
the formula shows us that the angle between T,(w) and w is twice the angle 
0 between w and u: 

I (&(+w)  l ~ ) j 2  _ 
1 + T . ( w ) .  w 

= cos20 

1 + cos 20 

2 

because (&(~w) l t~ )  is the average and this is cos 0 in the quantum case. 
Moreover, also the angle between T,(w) and u is 0: 

= (~w I s , ( o . ) )  

= (q, wl ~ . )  

because Sl is self-adjunct and ~,  is an eigenvector of  Si with eigenvalue + 1. 
Using elementary triangle inequalities on the sphere, we see thus that S~ is 
a rotation over 180 deg. An elementary calculation reveals for an arbitrary 

u = ( s i n 0 1 c o s q ~ l ,  sin 0j sin , l ,  cos 00  
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the following form of the rotation: 

- 1  + 2 cos2,.pt sin20~ 
= 12 sin z 0r cos ~ sin q~ 

Se~01.~,~ \ 2  cos q~l cos 01 sin 0t 

2 sinZ0t cos q~t sin q~t 
-1  + 2 sin 2 qot sin201 
2 sin tp~ cos 01 sin 01 

2 cos qo~ cos 0~ sin 0r'~ 
2 sin q~ cos 0, sin 0r ) cos 20~ 

4.2. Mathematical Assumptions 

The physical assumptions only make it possible to define the angle ~/w 
between a vector w and its image T,~(w), which will become clearer in a 
following section. In general this means that we only can say that T,(w) lies 
on a small circle on the Poincar6 sphere, centered around the axis [ -w ,  w] 
and making an angle "/w with it. Here we can make different choices to define 
our T,(w) unambiguously. We can make the assumption that T,~(w) makes the 
same angle 0 with u as u with w. This is a completely arbitrary demand. It 
is inspired by the fact that in the quantum case we have that (TO 2 = idc 2. 
There is always the possibility to "get back where you started from." If we 
need the possibility to get back from T,(w) to w, we have to be aware of  the 
fact that the action of  T, on T ( w )  depends on the angle Or,~w) between T~(w) 
and u, and it is necessary that this angle is equal to the angle 0,, between u 
and w if we want that a same but opposite action is made. If we look at the 
quantum case more closely, we see that it is in fact the inverse of  S~ which 
is involved: S 2 = S-S-~  = S-~" S = idc 2, because in the quantum case we 
have that S-~ = S. Of course in the intermediate cases this property of the 
spin operator is lost. More precisely, we can say that the operator T, is split 
for e :~ 1 into two operators: a "left-handed" Tt (the set {Tt(w), w, u} is "left- 
handed") and a "right-handed" Tr. Then we can restate the formula (T0 2 = 
ids,,,-f by Tr'Tt = Tt" T,. = ids,,r/. It simply means that for the nonquantum 
case symmetry is lost. 

4.3. Study of the Algebra of Spin-l/2 Measurement Operator T~ in 
the Quantum Case 

With the general matrix representation 

Seul(ol.~l) 

we can imitate consecutive measurements around different arbitrary axes 
by multiplying their matrix representations and study the consequences. In 
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particular we are interested in whether we have commutativity. We therefore 
take two arbitrary unit vectors u and w: 

u = ( s i n 0 1 c o s q h ,  s in0ts in tp~,  cos0~) 

w = (sin 02 cos tp2, sin 02 sin q~2, cos 02) 

and their corresponding matrices 

Selu(ol.~l) a n d  Se$~02.,2) 

given by 

- 1  + 2 c o s  2q~lsin20t 2s in  z0tcosq~,s inq~l  
= 2s in  20 t cosq~s inq~ ,  - 1  + 2 s i n  2qhs in  20~ 

Se~o,.,,) \ 2 cos tpl cos 01 sin 01 2 sin q~t cos 01 sin 01 

2 cos tp, cos 01 sin 00:\ 
2 sin tp~ cos 0~ sin ) cos 201 

[ - 1 + 2 cos2~2 sin202 2 sin 2 02 cos q~2 sin q~2 
= 12 sin 2 02 cos tp2 sin q~2 - 1 + 2 sin 2 q02 sin 2 02 

Se£~e2.~_~ \ 2 cos ~P2 cos 02 sin 02 2 sin ~P2 cos 02 sin 02 

2 cos ~2 cos 02 sin 0 ~  
2 sin tp2 cos 02 sin ) cos 202 

and study the cases where these two matrices commute. It is easy to see that 
there only will be problems on the nondiagonal elements of the matrix product. 
Moreover, we only need to calculate three of these nondiagonal elements, 
because the other three elements will contribute no further conditions on u 
and w. This is so because 

S I = S~J "S'e' ( eu(01,~l)" Se~402.tp2) )t w(02,ff,2) u(01,~l) 

= Sel.o~.~2~" S&O,.~,~ 

so that commutativity is obtained if and only if the matrix 

S~ -S l  eu(01 ,,.p 1 ) ew(02,~ 2 ) 

is equal to its transponent. After some elementary calculations this leads to 
the following set of conditions on u and w: 
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(u-w)sin(cpt - ¢pz)sin O1 sin 02 = 0 
(u" w)(cos qol sin O~ cos 02 - cos ¢P2 sin 02 cos 01) = 0 
(u-  w)(sin ¢Pl sin Oi cos 02 - sin ¢P2 sin 02 cos  0~) = 0 

so that we see that a sufficient  condit ion for commuta t iv i ty  is that u and w 
are or thogonal .  I f  they are not, we  can divide by  their scalar  product,  which 
is now nonzero,  and we obtain the fol lowing relations: 

sin(~ot - ¢p2)sin Ot sin 02 = 0 
cos ~ sin O~ cos  02 - cos  ¢P2 sin 02 cos  O~ = 0 
sin ¢p~ sin O~ cos 02 - sin ¢P2 sin 02 cos Ot = 0 

f rom which we can deduce  that either u = w or else that  u = - w ,  thanks 
to the need for O~ and 02 to have  a value be tween  0 and 'rr. Only then do we 
see that the product  matr ix  

S t  - S l  eu(01,~Ol) ew(02.tp 2) 

becomes  equal to its t ransponent ,  in perfect cor respondence  with the descrip- 
tion in Hilbert  space o f  course.  

5. T H E  G E N E R A L I Z E D  S P I N - l / 2  M E A S U R E M E N T  O F  T H E  c-  
M O D E L  

5.1. Satisfying the Physical Assumptions 

We will study the spin opera tor  for  various values  o f  ~. For  ¢ = 1 we 
have  found that the act ion o f  the spin operator  is that of  a rotation over  
"rr. Because  the state space is in general  not a Hi lber t  space we use the 
fol lowing correspondence:  

1 + T~(w)'w 
- " r ~ ( w ) 2  

2 

and give to the ou tcome  x~ the numerical  value o f  + 1 and to the ou tcome 
x~ 2 the numerical  value o f  - 1. Doing  this, we can calculate  the average  T,(w) 
by means  of  the given probabili t ies:  

T~(w) = ( +  1)P ' (pulpw) + ( - 1 ) P ' ( p _ u l p ~ )  

and can be found to depend upon the angle 0 between w and the spin direction 
u in the fol lowing way:  

1. I f  cos 0 --> ~, then T~(w) = 1. 

2. I f  ~ > cos 0 >- - ~ ,  then T , (w)  = (cos 0)/~. 
3. I f  cos  0 --< - ¢ ,  then T , ( w )  = - 1 .  
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So we find that: 

1. I f  cos 0 -> ~, then [1 + T , (w) .w] /2  = 1. 
2. I f ~  >-- cos 0 >-- - e ,  then [1 + T~(w).w]t2 = (cos 2 0)/~ 2. 
3. If  cos 0 --< - ~ ,  then [I + T , (w) .w] /2  = 1. 

If  we now make the assumption that T,(w) is o f  unit length, we can 
calculate the angle Yw between T~(w) and w: 

1. If  cos 0 -> ~ or cos 0 - - ~ ,  then cos Yw = 1. 
2. I f  e >-- cos 0 -> - ~ ,  then cos %v = (2 cos 2 0 - ~2)&2. 

It is obvious  that this indeed reduces to a rotation over 180 deg if ~ = 
1. This is so because the formula  shows that the angle between T~(w) and w 
is twice the angle 0 between w and u. Moreover ,  the angle between T~(w) 
and u is also 0, as we proved earlier for the quantum case and demanded  
for the intermediate cases. 

For ~ = 1 we see that the operator  T, is linear: 

T / w  + v'~ Tl(w) + Tl(v) 
1 -7) = , z  

This is trivial if we write the action o f  TI down in some more  geometrical  
way, making clear  its linearity: T~(w) = - w  + 2(u- w)u. This result makes  
it a natural question to ask under which circumstances the operator T~ is linear. 

5.2. The  Intermedia te  Cases  (0 4: e =~ 1) 

Under  which circumstances is this Te a linear operator on the Poincar6 
sphere? We will show that there is no such operator. 

Theorem 1. T~ is a linear operator  if and only if e = 1. 

Proof. We have to show that T~(w + v) = T~(w) + T,(v) for every v, 
w on the sphere. Because we supposed that T~ is a linear operator  on the 
Poincar6 sphere, we will check that 

Taw) + ray)_ r {w + q 
"UW/ 

and this is sufficient if T~ is linear. 
Let us take w = u and v = u±, an arbitrary vector orthogonal  to u. It 

is obvious that cos Yw = 1 because 0,,,,, (the angle between u and w) = 0 
and cos % = - 1 because 0u,. = rr/2. In other words,  a vector  v on the equator  
o f  u will a lways be mapped onto its antipode - v ,  and u will a lways be 
mapped by T~ onto itself. More precisely, if we define the eigensets 
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eig~(1) and eig~(2) as the sets eig~(1) = { Pv I • <-- v" u } and eig~,(2) = { Pv I v" u 
-< - • } ,  then every vector of an eigenset will be unchanged by the operator. 
We find that 

T,(w) + T,(v) w - u± 

45 45 
We have now two possibilities for (w + v)/45: 

1. If (w + v)/v/2 is an eigenset, it will be mapped onto itself, and T~ is 
clearly not linear. 

2. (w + v)/45 is not in an eigenset, and the action of  T~ will transform 
it into T,((w + v)/45). The angle 0 between (w + v)/45 and u is rr/4. So 
we find 

2 c o s  2 0 - • 2  1 - •z 
COS ~(w+v)/X/2. - -  •2 ~2 

On the other hand, we see that the angle between (w - u l ) /45  and (w + 
v)/45 is -rr/2 (they are orthogonal) such that we also have that cos 
~(w+v)/,,5 = 0. This can only be the case if and only if • = 1. Thus only in 
the quantum case do we find that T, is linear. 

5.3. The Classical Case 

The classical case needs special study, because now e = 0, making it 
impossible to follow the guidelines of  the previous sections. Let us recall 
that if K = V" U, the experiment e~, gives outcome x~ with probability 1/2 and 
outcome ~ with probability 1/2. Thus the average To(w) for an arbitrary w 
on the equator (w'u  = 0) is 

To(w) = (+l)P°(pulpw) + ( - l ) P ° ( p - u l p w )  = (+1)-~ + ( -1 )½ = 0 

Hence [1 + To(w)" w]/2 = 0, and the angle ~/w between w and To(w) is w. 
We have two possibilities: 

1. We neglect the foregoing remark and define To as the identity for • 
= 0, making an extrapolation of the eigensets. Indeed, the upper open half- 
sphere is an eigenset and the lower open half-sphere is an eigenset of  To. 
Making the eigensets closed by defining the action of  To on the equator as 
the identity, we recover a linear operator. Unfortunately, doing this, we not 
only abandon the guidelines we set out with in the beginning, but we also 
lose symmetry and the eigensets get mixed up, which is an untenable situation. 

2. That To is the identity on the whole sphere, except on the equator, 
where it maps the points on their antipodes. We see that we have no linearity 
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in the classical case, too. It seems the most natural thing to do, maintaining 
our guidelines and respecting symmetry. 

6. THE ASYMMETRIC AND GENERAL ASYMMETRIC CASE 

The reasoning above can be repeated for an even more general model: 
the asymmetric e-model in which an extra parameter  d is introduced, d 
[ -  1 + e, 1 - e], describing this asymmetry. I f  d equals zero, we find the 
previous case. For d :/: O, no linearity will be found, as we shall prove below. 
We will use the notation T d to denote the corresponding operator. 

6.1. The  ¢,d-Model 

The probability P'a(P, Ipw) to obtain an outcome x~ = + I  is given by: 

1. I f  u . w  >- d + e, P 'a(p ,  lpw)  = 1. J 
2. If  d +  e >- u . w  >- d - ¢, P~a(pulpw) = ~ ( w ' u  - d +  ~). 

3. If  d - e > u . w ,  P~a(P, Ipw) = O. 

The probability P~a(P-u Ip~) to obtain an outcome ~ = - 1 is given by: 

1. I f  u . w  >- d + ~, P ' a ( p - , I p w )  = O. 
I 

2. I f d  + ~ --> u ' w  >-- d - ~, P ~ ( p _ , l p w )  = ~ ( d  + ¢ - w ' u ) .  

3. I f d  - ¢ -> u ' w ,  P ' a ( p - , l p ~ )  = 1. 

Thus we have after a completely analogous calculation to the previous 
sections that the angle ~/~ between T a ( w )  and w is given by: 

1. I f u - w - > d + e ,  c o s ~ / w =  1. 
2. If  d + e > u . w  -> d - ¢, cos ~/,, = [2 (u .w - d )  ~ - e2]/e z. 

3. If  d -  ¢ > - u ' w ,  c o s ~ / ~ =  1. 

6.2. Satisfaction of the Mathematical Assumption 

Can now the left spin operator T,  a, which we denote by TEaj(w), be chosen 
in a way such that Taj(Ta, , , (w))  is again w? This is not always the case. For 
an arbitrary w the calculations show that T,a,t(w) lies on a circle which makes 
an angle ~/with w, which depends on the angle 0w between w and u. So, to 
go back to w we need that Ta,,,(w) makes the same angle 0w with u. But for 
w with u" w = d, we see that cos "y = - 1, so that Ta~,,(w) = - w  and 

such that T~, t (Tdr (w) )  g: w,  hence Td, t • Td, r ~ ids~,-f. A simple calculation 
shows that for d = O, it is always possible to choose T~,t(w) such that 
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Td.t(Tdr(W)) = W. One can see this easily by considering the fact that the 
"troublesome" case w with u. w = d = 0 gives no problems anymore because 
now Tdr(w)  = - - w  lies also on the operator and no longer under it. So even 
in that extreme case no further problems arise. The reasoning for Tar ' Td; 

ids,,ry is completely analogous. 

6.3. Lineari ty  for the A s y m m e t r i c  Si tuat ion 

It can be shown that an asymmetric situation can never give rise to a 
linear spin operator. If T, a is a linear function which maps the Poincar6 sphere 
onto itself, d must equal zero. 

T h e o r e m  2. Ta~ is a linear function which maps the Poincar6 sphere onto 
itself ~ d = 0. 

Proof .  If T~ is linear, we must have Vv, w: Tab(v) + Ta,(w) = T~(v + 
w) and T~(a- v) = c~. T~(v), Vc~ e R. In particular, for v = u, and w such 
that cos 0w = d, we have that Ta,(v) = u and Ta~(w) = - w .  The norm of 

v + w = `/2(1 + cos 0w) = ,/2(1 + d)  

So (v + w)/`/2(l  + d) has norm 1 and lies on the sphere. Its image also 
lies on the sphere by assumption and thus has norm one. 

But 

+ w + _ , , -  w 

k ` /2 ( i  + d = `/2(1 + d) ,/2(1 + d) 

which has norm ,/2(1 - d)/`/2(1 + d). This can only be 1 for d = 0. 

7. C O N C L U S I O N  

We have constructed a set of  operators of  the generalized e,d-model and 
investigated the circumstances under which these operators become linear. 
It was shown that only for the symmetric case with maximal fluctuations of  
the interaction between entity and measurement apparatus do the operators 
become linear on the Poincar6 sphere. This case coincides with ordinary 
quantum mechanics, where the set is the generating set of a *-algebra. In a 
later article we will investigate further the structure of  the set of  general 
operators of  the e,d-model. 
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